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1 Introduction

1.1 Aspects of programming languages
e Syntax: "How does a program look like?” (Lecture Compiler Construction)
— hierarchical composition of programs from structual components
o Semantics: "What does a program mean?” (This lecture)
— output/behaviour/... in dependence of input/environment/ ...
o Pragmatics: ”"Is the programming language practically usable?” (Lecture Software Engineering)

— length and understandability of programs,
learnability of programming language,

appropriateness for specific applications

1.2 Kinds of formal semantics
¢ Operational semantics
— Describes computation of the program on some abstract machine
— Example:

{c1,0) > o' {cg,0"y — "

{c1;¢9,0) = o

(seq)

— Application: Implementation of programming languages (compilers, interpreters, ...)

e Denotional semantics

— Mathematical definition of input/output relation of the program by induction on its syn-

tactic structure
— Example: €[.] : Cmd — (£ - ) : Ceg; 2] := €[ez] o €eq]
— Application: Program analysis; often used as reference semantics

o Axiomatic semantics

— Formalisation of special properties of programs by logical formulae (assertions / proof rules)

— Example:

{Afa{C}  {Cler{B}

e Ay errea (B

— Application: Program verification
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1.3 The imperative model language WHILE

WHILE is a simple imperative programming language without procedures or advanced data struc-

tures.

1.3.1 Syntactic categories

Category Domain Meta variable
Numbers Z=1{0,1,-1,..} =z
Truth values B = {true,false} t
Variables Var = {z,y, ...} X
Arithemtic expressions AExp a
Boolean expressions BExp b
Commands (statements) Cmd c

1.3.2 Syntax of WHILE

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free grammar:

a u=zl|x|ar+a|ar—az|axay € AExp
b u=t|ar=az|a; >as|—-b|by Aba|by Vb € BExp
¢ u=skip|xz:=a]ci;co |if bthen c¢; else ca end | while b do ¢ end € Cmd

We assume that
o the syntax of numbers, truth values and variables is predefined (i.e., no "lexical analysis”)

o the syntactic interpretation of ambiguous constructs (expressions) is uniquely determined (by

brackets or priorities)
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2 Operational Semantics of WHILE

2.1 ldea

We define the meaning of programs by specifying its behaviour being executed on an (abstract) machine.
Here this is done by defining an evaluation/execution relation for program fragments (expressions,
commands).

We employ derivation rules of the form

Premise(s)

(Name) [side conditions]

Conclusion

Meaning: If every premise [and all side conditions| are fulilled, then the conclusion can be drawn. A

rule with no premises is called an axiom.

2.2 Program States

Definition 2.1 (Program state)

A (program) state is an element of the set
Y :={o|o:Var - Z}

called the space state.

Thus o(z) denotes the value of x € Var in state o € X.
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2.3 Evaluation of Arithmetic Expressions

Definition 2.2 (Evaluation relation for arithmetic expressions)

If a € AExp and o € X, then {(a, o) is called a configuration.
Expression a evaluates to z € Z in state o (notation: {a,c) — z) if this relationshop is derivable

by means of the following rules:

Axioms
const) ——
( ) (z,0) > 2
(var)
(z,0) = o(x)
Rules
a1, 0y — 2 as, 0y — 2
(plus) (@1, ><a1 -l—lag Ui i: z> 2 where 2 := z1 + 29
)
(mi {ar,0) = z1  {az,0) = 2 -
minus) (a1 — a2, 0) — 2 where z := 21 — 29
b
a1, 0y — 2 a9, 0y — 2
(times) (a1,9) ! (az,0) 2 where 2 := 21 - 2

{ay * ag,0) —> 2

2.3.1 Determinism of arithmetic evaluation relation

Lemma 3.5(1) (Determinism of arithmetic evaluation relation)

For every a € AExp, 0 € 3, and 2,2’ € Z:

{a,0) — z and {a,0) — 2’ implies z = 2/
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2.4 Free Variables

The set of free variables of an expression is given by the function
FV : AExp — 2V

where

FV(z) .= & FV(ai1 — az) := FV(a1) u FV(a2)
FV(z) := {z} FV(ay * az) := FV(a1) u FV(a2)
FV(a1 + CLQ) = FV(CLl) ) FV(CLQ)

TODO: Are there definitions for Free Variables of boolean expressions or commands?
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2.5 Evaluation of Boolean Expressions

Definition 2.6 ((Strict) evaluation relation for Boolean Expressions)

Axioms

{t,o) >t

(a1, 0) > z {ag,0) > z

{a; = ag,0) — true
{ar,0) = =1 {ag,0) — 23
(a1 = ag,0) — false

if 21 # 2o

Rules

(b,o) — false
(=b,0) — true

(b,o) — true
{(—=b,0) — false

(by,0) — true (bg, o) — true

(b1 A by,0) — true
(bi,0) — true (be, o) — false
(b1 A by, o) — false
(b1, o) — false

(b1 A by, o) — false

(ba, o) — true

For b € BExp, 0 € ¥ and ¢t € B, the evaluation relation {b,o) — t is defined by:

<a1,a>—>z1 <a2,a>—>22

if Z1 > 29
{a; > ag,0) — true

lay,0) = z1 {ag,0) — 25

if 21 < 29
{a; > ag,0) — false h

(by,0) — false (be, o)y — false
(b1 A b2, o) — false

(b1,0) — true (ba, o) — true
(b1 v by, o) — true

(b1,0) — true (by, o) — false

<b1 \YZ b2,0’> — true
(b1,0) — false
(b1 v ba,0) — true

(b1, o) — false
(b1 v by, o) — false

(bg, o) — true

(ba, o) — false

2.5.1 Determinism of boolean evaluation relation

Lemma 3.5(2) (Determinism of boolean evaluation relation)

For every b € BExp, 0 € 3, and t,t' € B:

(b,oy — t and (b,0) — t' implies t = ¢/
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2.6 Execution of Commands

The effect of a command is the modification of a program state.

Definition 3.2 (Execution relation for commands)

For ¢ € Cmd and 0,0’ € ¥, the execution relation {c,o) — ¢’ is defined by:
Axioms
kip) ————
(skip) (skip,0) = o (asgn) (a,0)>2
(x:=a,0) > oz z]
Rules
(seq) {c1,0) =o' (c2,0") = 0" (i£-6) (b,o) — false {cg,0) > o'
{e1;¢9,0) = o’ (if b then ¢; else ¢z end, o) — o
(£t (b,0) — true {er,0) > o' " (b,0) — false
if-t) — 7 (wh-f) ———
(if b then ¢y else ¢o end,0) — o {while b do c end,0) —> o
(whet) (b,cy — true {c,o)y = o' {while b do ¢ end, o’y — "
W -
{while b do ¢ end, o) — "

2.6.1 Non-Terminating Executions

Corollary 3.4

The execution relation for commands is not total, i.e. there exist c € Cmd and o € ¥ such that

{¢,0) — ¢’ for no o’ € .

Example: ¢ = while true do skip end (with arbitrary initial state o € ).

Proof by contradiction: assume there ex. ¢’ € ¥ such that {¢,c) — o

Then there must exist a finite derivation tree s for {¢,o) — o’

As ¢ = while true do ... end and (true, o) — true by Definition, s must be of the form
/

h-t 5
(wh-t) {while true do skip end, o) — ¢’

(skip)

{true, o) — true (skip,o) —> o

{while true do skip end, o) — o’

for some derivation tree s’, which clearly contradicts the finiteness of s.
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2.6.2 Determinism of execution relation

Theorem 4.1 (Determinism of execution relation)

The execution relation for commands is deterministic, i.e. whenever ¢ € Cmd and o,0’,0” € &

such that {¢,0) — ¢’ and {¢,0) — ¢” then ¢’ = o”.

Proof of Theorem 4.1:
We show o’ = ¢” by induction on the structure of the derivation tree for {c,o) — o'.
¢ Induction base:
— Case (skip) (skip, o) — ¢ (i.e. c=skipand 0’ =0)
Since this axiom is the only applicable rule, it follows that ¢” = o = ¢’.

¢ Induction step:

la,0) —> 2

— Case (asgn) (ie. c = (z:=a) and 0o/ = o[z — z]):

{(x :=a,0) > o[z z]

Here the derivation for {¢,c) — ¢” must be of the form

{a,o)y — 7'

(asgn) (x :=a,0) > o|x— 7]

such that Lemma 3.5(1) (p. 7) implies 2’ = z and therefore

o' =colz— =0z z2]=0

) {e1,0) — 01 {co,01) — 0’

<Cl'62 0‘> — o' (i.e. c = 01;02):
! )

- Case (seq

Here the derivation for {¢,c) — ¢” must be of the form

{c1,0) = 09 {co,09) > 0"

{c1;¢9,0) = o”

(seq)

such that the induction hypotheses for {c1, o) and {cq, 01 ) respectively yield o9 = 01 and then
o’ =o'

/
b, ) — true (voy — o (i.e. ¢ = if b then ¢; else ¢y end):

— Case (if-t
(i) (if b then ¢; else ¢3 end, o) — o’

Here the derivation for {¢,c) — ¢” must be of the form

(b,o) >t  {ci,0) ="
{(if b then ¢; else ¢z end, o) — "

where t € B and ¢ = 1/2 for t = true/false. Now Lemma 3.5(2) (p. 9) yields ¢ = true and thus

i = 1, and therefore the induction hypothesis for {¢;,c) implies ¢” = ¢.
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— Case  (if-f) b, 0) - false (o) >0 is analogous to the previous case (if-t)
(if b then ¢; else ¢z end, o) — o
— Case (wh-f) b, ) - false (i.e. ¢ = while b do ¢ end and ¢’ = o):

{while b do c end,0) — o

In the derivation for {¢,o) — ¢”, only one of the two while rules can be used, which both first
evaluate (b,0). According to Lemma 3.5(2) (p. 9), the result must again be false, meaning
that rule (wh-f) is the only applicable. Hence ¢’ = o = o’.

(b,o) — true {co,0) — 01 {while b do ¢y end, 1) — o’

— Case h-t
(wh-t) {while b do c end, o) — o’

(i.e. ¢ = while b do ¢y end and o’ = 0):

As before, the derivation for {¢,o) — ¢” must be of the same form:

(wh-t) (b,ay — true {co,0) — 09 {while b do ¢y end, g2y — "
{while b do ¢ end, o) — o”
Now the induction hypothesis for {(c¢p,o) yields o2 = o1, and applying it once more to

{while b do ¢y end, o1) we obtain ¢” = ¢’.
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2.7 Proof by structural induction
Given: an inductive set, i.e. a set S whose elements are either

e atomic or

o obtained from atomic elements by (finite) application of certain operations
To show: property P(s) applies to every s € S
Proof: we verify:

o Induction base: P(s) holds for every atomic element s

e Induction hypothesis: assume that P(s1), P(s2) etc.

e Induction step: then P(f(si,...,sy)) holds for every operation f of arity n
Structural induction is a special case of well-founded induction.

Generalisation: complete (strong, course-of-values) induction

2.7.1 Structural induction on arithemtic expressions
Definition: AExp is the least set which
o contains all integers 2z € Z and all variables x € Var and
e contains aj + as, a1 — as and aq * ags whenever ap,as € AExp
Proof that property P holds for every a € AExp:
o Induction base: P(z) and P(x) holds (for every z € Z and x € Var)
o Induction hypothesis: P(a;) and P(a2) holds

o Induction step: P(a; + a2), P(a; — az) and P(a; * az) holds

2.7.2 Structural induction on boolean expressions
Definition: BExp is the least set which
e contains the truth values t € B and, for every ai,as € AExp, a1 = a2 and a1 > as, and
e contains —by, by A by and by v by whenever by, by € BExp
Proof that property P holds for every b € BExp:
e Induction base: P(t), P(a; = az) and P{a; > az) holds (for every t € B, a1, as € AExp)
e Induction hypothesis: P(b;) and P(by) holds

e Induction step: P(—b1), P(by A by) and P(by v by) holds
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2.7.3 Structural induction on WHILE commands
Definition: Cmd is the least set which

e contains skip and, for every x € Var and a € AExp, x := a, and

e contains cy;co, if b then ¢y else co end and while b do ¢; end whenever b € BExp and ¢, co € Cmd
Proof that property P holds for every ¢ € Cmd:

o Induction base: P(skip) and P(x := a) holds (for every = € Var and a € AExp)

e Induction hypothesis: P(c;) and P(c2) holds

e Induction step: P(ci;ca), P(if b then ¢y else co end) and P(while b do ¢; end) holds (for every
b € BExp)

2.7.4 Structural induction on derivation trees of the execution relation
Proof that property P holds for every derivation tree s of an expression:

o Induction base: P( ) holds for every o € ¥, and P(s) holds for every derivation

(skip,c) — o
tree s of an expression.

e Induction hypothesis: P(s1), P(s2) and P(s3) hold

¢ Induction step: it also holds that

S1

_ P( (asgn) <l’ = a’0'>—)0'[$'_) Z] )
s1 52
— P( (seq) {1 ca,0) — o” )
— p( (ift) FEv )

(if b then ¢; else ¢2 end, 0y — o
S1 59
(if b then ¢; else co end, o) — o’

)

— P( (if-f) )

S1 59 S3

— h-t
P( (wh-t) {while b do ¢ end, o) — o”

S1

— h-f
P (wh-f) {while b do cend,o) > o

)
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2.7.5 Well-founded Induction

Definition Ex1Task4 (well-foundedness)

A binary relation << S x S is well-founded if every non-empty subset X € S has a minimal

element with respect to <.

Lemma Ex1Task4 (well-founded induction)

Given a well-founded relation <<€ S x S and a Property P. Then the principle of well-founded
induction states:

In order to show that P(s) holds for all elements s € S, it suffices to prove for all s € S that P(s)
holds under the assumption that P(s") holds for all s’ < s.
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2.8 Functional of the Operational Semantics

Definition 4.2 (Operational functional)

The functional of the operational semantics
O[] :Cmd - (¥ - %)

assigns to every command ¢ € Cmd a partial state transformation Ofc] : ¥ — X, which is

defined as follows:

! if {¢c,0) — o’ for some ¢’ € ¥

Olc]o =

undefined otherwise

O[c]o can indeed be undefined (consider e.g. ¢ = while true do skip end).

2.8.1 Operational equivalence

Definition 4.3 (Operational Equivalence)

Two commands ¢1,co € Cmd are called (operationally) equivalent (notation: ¢; ~ cg) iff

Olea] = Olez]

Thus:
o 1 ~c iff Ofci]o = Ofez]o for every o €

o In particular, Ofci]o is undefined iff Ofcz]o is undefined

2.8.2 Example: Unwinding of loops

Simple application of command equivalence: The test of the execution condition in a while loop can be

represented by an if command.

Lemma 4.4

For every b € BExp and ¢ € Cmd:

while b do ¢ end ~ if b then ¢;while b do ¢ end else skip end

This can be proven via operational equivalence.
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Let ¢1 := while b do c end and ¢y := if b then c;c; else skip end. We show the mutual inclusion of the

function graphs of Ofc;] and Ofca].
First, let Ofc1] = o/, i.e. {c1,0) = o’. Two definitions are possible:
o (wh-t) Here the derivation tree is of the form

(b,o) — true {e,o) = o” (c1,0") = o

(wh-t) (.00 > o

This implies that also the following derivation tree is valid:

(,o) = 0" {a,0") -0

(seq)

{eg,0) > o'

(b,c) — true {¢c;c1,0) > o'

(if-t)

/

implying that also O[ce]o = o

o (wh-f) Here we have

b,o0y — false
whef) 227 = 1dPE
<Cla 0> -0
and hence ¢/ = o. Correspondingly,
i
(b,o) — false (sldip) (skip,o) — o

(if-f)

{ca,0) > O
implying that also Ofcolo = 0 = o'.
For the reverse inclusion, let Ofcs]o = o', i.e. {c1,0) — o’. Again we have two cases:

o (if-t) Here the derivation tree is of the form

(if-t) (b,0y — true (c;er, 0 B o

{eg,0) > o'
where (#) implies that there ex. ¢” € 3 such that {¢,0) — ¢” and {c¢;,0”) — ¢'. Thus:

(b,o) — true {e,o) — " {c1,0") =o'

(wh-t)

{er,0) > o'
and hence Ofci]o = o’.

o (if-t) Here we have

i
(b,o) — false (skip)
{ca,0) > 0

(i£-6) (skip,o) = o

Thus ¢’ = ¢ and

(b,o) — false

(wh-f) (0= o

which implies Of¢;] = 0 = o'.
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2.9 The Abstract Machine

Definition 5.1 (Abstract machine)

The abstract machine (AM) is given by

e programs P € Code and instructions p:

P ::=p*
p ::=PUSH(z) | PUSH(¢) | ADD | SUB | MULT | EQ | GT | NOT | AND | OR |
LOAD(z) | STO(z) | JMP(k) | JMPF(k)

(where z,k € Z, t € B and x € Var)
« configurations of the form {pc, e, o) € Cnf where
— pc € Z is the program counter (i.e. address of next instruction to be executed)
— e € Stk := (Z U B)* is the evaluation stack (top to the right)
— o€ X = (Var > Z) is the (storage) state
(thus Cnf = Z x Stk x X)
« initial configurations of the form (0,¢,0)

« final configurations of the form {|P|, e, o)
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2.9.1 Transition relation of AM

Definition 5.2 (Transition relation of AM)

For P = py;...;pn—1 € Code and 0 < pc < n, the transition relation > € Cnf x Cnf is given by
P {pc,e,oy>{pc+1l,e:z,0) if poc = PUSH(2)
P {pc,e,oy>{pc+ l,e:t,0) if ppc = PUSH()
P {pc,e:z1:za,0y>{pc+1l,e: (21 + 22),0) if poc = ADD
P {pcye:zi:z2,0y>{pc+1le: (21 — 22),0) if ppc = SUB
P {pc,e:z:z2,0)>{pc+1l,e:(z1-22),0) if ppc = MULT
P {pc,e:z1:29,0)>{pc+1l,e:(z1 = 29),0) if ppc = EQ
P {pc,e:z1:2z,0)>{pc+1,e: (21 > 22),0) if ppc = GT
P {pc,e:t,oy>{pc+1l,e:(t),0) if ppc = NOT
P {pc,e:t,:ta,o)>{pc+1,e:(t1 At),0) if ppc = AND
P {pc,e:t, :ta,o)>{pc+1,e: (t1 vi2),0) if ppc = OR
P+ {pc,e,oy>{pc+ l,e:o(x),0) if ppc = LOAD(x)
P {pc,e:z,0)>{pc+1,e [z z]) if ppc = STO(z)
P {pc,e,o)>{pc+ k,e,o) if ppc = JMP(k)
P {pc,e: true,o)><{pc+1,e,0) if ppc = JMPF(k)
P+ {pc,e:false,o) > (pc+ k,e,o) if ppc = JMPF(k)

2.9.2 Terminating and looping computations

Corollary 5.3

> is not total, i.e. there exists v € Cnf such that

o4

for all ' € Cnf

Proof: Possible cases are:
o v is final (that is, v = (| P|,e,0))
o v is stuck
— e.g. v ={pc,1,0) with ppc = ADD or ppc = JMPF(k) (inappropriate arguments)

— or v = {pc,e,o) with pc ¢ {0, ..., |P|} (program counter out of bounds)
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Definition 5.4 (AM computations)

e A finite computation is a finite configuration sequence of the form

Y0, V1 -y VE

where k € N and ~;_1 > 7; for each i € {1, ..., k}.
e If, in addition, there is no 7 such that x> -y, then g, 71, ...7; is called terminating.

¢ A looping computation is an infinite configuration sequence of the form

Y0, Y15 7Y25 -+

where ~y; > ;.1 for each ¢ € N.

Note: according to (the proof of) Corollary 5.3 (p. 19), a terminating computation may end in a final

or in a stuck configuration.

2.9.3 Determinism of Execution

Lemma 5.6 (Determinism of AM semantics)

The semantics of AM is deterministic: for all v,~',~” € Cnf,

P+ ~yr>+"and P+ vy1>+" implies v = +"

Proof:
o Instruction to be executed is unambiguously given by program counter
o Topmost stack entries and storage state then yield unique successor configuration

Thus the following function is well defined:

Definition 5.7 (Semantics of AM Programs)

The semantics of an AM program is given by M[.] : Code — (X — X) as follows:

o’ if P+ 0,¢e,0)>* {|P|,e,c") for some e € Stk
— 06,0y 5" ([P,

undefined otherwise
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2.9.4 Translation of Arithmetic expressions

Definition 6.1 (Translation of arithmetic expressions)

The translation function
Tal.] : AExp — Code
is given by
Talz] := PUSH(2)
Ta]z] := LOAD(x)
Talar + a2] := Ta[ar]; Tullaz]; ADD

Talar — as] := Tafar]; Tafaz]; SUB
‘Ia[[al * a2]] == ‘Ia[[al]];‘Ia[[ag]]; MULT

Example 6.2

‘Ia[[m + 1]] = ‘Iaﬂm]];‘zaﬂl]];ADD
— LOAD(x); PUSH(1); ADD
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Lemma 7.2 (Correctness of T,[.])

For every a € AExp, 0 € 3 and z € Z,

{a,o) — z implies T,[a] + €0,¢,0) >* {|Z,[a]|, z,0)

Note: The implication is sufficient to ensure soundness and completeness as the expression evaluation

is total and the semantics of machine code is deterministic (see Lemma 5.6 on page 20).
Proof of Lemma 7.2:

Let a € AExp, P := %,[a], 0 € ¥ and z € Z such that {(a,0) — z.
By structural induction on a, we show that P + {0,¢,0) >* {|%,[a]]|, z, 0):

¢ Induction base

—a=z€el
Here P = 0 : PUSH(z), such that P + {0,¢,0) > {1, z,0)

— a =2z € Var:
Here z = o(z) and P = 0: LOAD(z), such that P - {0,e,0)>{1,2,0)

¢ Induction step

— a=aj+az:
Here z = 21 + 29 where {a;,0) — z; and P = Py; P2; ADD for P; := T,[a;] (i = 1,2). Thus,

P {0,¢e,0)>" {|P1|, z1,0) (ind. hyp. for a; and Lm.7.1)
>*{|P1| + |Po|, 21 : 22,0) (ind. hyp. for az and Lm.7.1)
>*{|P|,z,0) (ADD at address |P;| + |P| and Lm.7.1)

Note: See page 29 for Lemma 7.1

—a=a; —ay and a = aj * as:

Analogous to a = a1 + as
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2.9.5 Translation of Boolean expressions

Definition 6.3 (Translation of Boolean expressions)

The translation function
Tp[.] : BExp — Code
is given by

%, [t] := PUSH(?)

Tplar = az] := Tu[ar]; Tallaz]; EQ

Tpllar > as] := Tyflar]; Talaz]; GT
Tp[—b] := Tp[b]; NOT

Tp[b1 A ba] := Tp[b1]; Tw[b2]; AND

Ty[br v ba] == Tp[br]; Tu[bo]; OR

Lemma 7.3 (Correctness of T;[.])

For every b € BExp, 0 € 3 and t € B,

(b,o) — t implies Ty[b] - €0,¢€,0) >" {|ZTp[b]|, ¢, 0)

Note: Again, the implication is sufficient to ensure soundness and completeness as the expression eval-

uation is total and the semantics of machine code is deterministic (see Lemma 5.6 on page 20).

The proof of Lemma 7.3 can be done by induction on the syntactic structure of b.
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2.9.6 Translation of Commands

Definition 6.4 (Translation of commands)

The translation function

%e[] : Cmd — Code

is given by
Tc[skip] = €

Telz:=a] := %,[a];STO(x)

Telersee] = Fe[ar]; Telea]
T [if b then c; else co end] = F[b]; IMPF(|Zc[er]] + 2);
Teler]; IMP(|Ze[e2] | + 1);

Tele2]

Tc[while bdo cend] = F[b]; IMPF(|Z:[c]| + 2);

Te[ef; IMP(=(IT[b]] + [Zelell + 1))

Theorem 7.4 (Correctness of T.[.])

For every ¢ € Cmd,

Ole] = MZ[c]]

The Proof is carried out in two steps:
o Completeness (Lemma 7.5): from source to machine code

e Soundness (Lemma 7.6): from machine to source code

Lemma 7.5 (Completeness of T [.])

For every c € Cmd and 0,0’ € X,

{c,0) — o' implies T.[c] - 0,¢,0) >* {|Zc[c]|, €, 0")

Proof of Lemma 7.5
Let {¢,0) — ¢’ and P := %.[c]. Possible cases according to Definition 3.2 (p. 10):

. Case (skip) (skip, o) > & (i.e. ¢ = skip and ¢’ = 0):
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Here P = ¢ and hence
P 0,6,0) 50 (|Pl,€, 0"

la,0) —> z

« Case (asgn) (i,e. c=(z:=a) and o' = o[z — 2]):

{(x:=a,0) > olx - z]
Here P = %,[a]; STO(z) and hence

P {0,¢e,0)>" (|%,[a]|,z,0) (Lemma 7.2 and 7.1)
> ([P, €,0')

{er,0) — " {cg,0"y — o’

« Case (seq) (i.e. ¢ =cy;c9):

{e1;¢9,0) > o’
Here P = ¥ [c1]; Te[e2] such that

P +0,¢,0)>"{|Zc[e1]|, €, ") (ind. hyp. for {c1,0) and Lemma 7.1)
>* (| ZTefer]| + |Zele2]|, €, 0"y (ind. hyp. for {co, "> and Lemma 7.1)

(b,o) — true {c1,0) > o'

o Case (if-t) (i.e. ¢ =if b then ¢ else cg end):

(if b then ¢; else ¢z end, o) — o'

Here

P =%,[0];
k. IMPF(k; + 2);
k+1:%c[e];
kE+k+1:IMP(ky +1);
E+k +2: % [ea];
k+ki+ko+2:

for k := |Zp[b]], k1 := |Zc[e1])] and kg := |Tc[e2]], and hence

P {0,¢e,0)>* (k,true,o) (Lemma 7.3 and 7.1)
>(k+1,€e0)
>*{k + k1 + 1,¢,0") (ind.hyp. for {ci,0) and Lemma 7.1)
>k +ky+ ko +2,6,0")

(b, 0y — false {c1,0) > o'

o Case (if-f) is analogous to the previous case (if-t)

(if b then ¢; else ¢z end, o) — o
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(b,c) — true {co,0) — " {while b do ¢ end, ") — ¢

e« Case h-t
(wh-t) {while b do ¢y end, o) — o’

(i.e. ¢ = while b do ¢y end):

Here

P =%, [b];
k : IMPF(kg + 2);
kE+1: % [co];
E+ko+1:IMP(=(k + ko +1));

for k := |Tp[b]| and ko := |Tc[eo]|, and thus

P {0,¢e,0) >* (k,true,o) (Lemma 7.3 and 7.2)
>(k+1,€e0)
>*{k + ko + 1,¢,0") (ind. hyp. for {cp,o) and Lemma 7.1)
> {0,¢,0")
>* (k + ko + 2,¢,0") (ind. hyp. for {c,o"))

(b,o) — false
{while b do ¢y end,0) = o

« Case (wh-f) is analogous to the previous case (wh-t)

Lemma 7.6 (Soundness of T.[.])

For every c € Cmd, 0,0’ € 3, and e € Stk,

Tefe] =<0, ¢,0) >* (T[], e,0") implies {¢,0) — ¢’ and e = €

The proof is done by induction on the length of the computation sequence (0, €,0) >* {|Z.[c]|, e, o").
TODO: See proof in exercises
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2.9.7 Example: Translation of factorial program

Example 6.5 (Translation of factorial program)

Tely := 1;while =(z = 1) doy := y x x50 := v — 1 end]
=%y := 1]; Zc[while =(z =1) do y := y* x;2 := x — 1 end]
—PUSH(1); STO(y);

TDl—(z = D[ IMPF(1Ze]ly := y # 252 1= 2 — 1] + 2)

Telel; IMP(=(|Zo[~(z = D]| + [Ty :
=PUSH(1); STO(y);

LOAD(z); PUSH(1); EQ; NOT; JMPF(8 + 2);
LOAD(y); LOAD(z); MULT; STO(y);
LOAD(m); PUSH(1); SUB; STO(z); JMP(—(4 + 8 + 1))
USH(1); STO(y);
(
(
(

yrx;xi=x— 1] + 1))

LOAD(z); PUSH(1); EQ; NOT; JMPF(10);
LOAD(y); LOAD(x); MULT; STO(y);
LOAD(z); PUSH(1); SUB; STO(z); JMP(—13)
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2.9.8 Example: Execution of factorial program
Example 6.6 (Execution of factorial program)
Let

P :=0:PUSH(1);1:STO(y);2 : LOAD(z);3 : PUSH(1);4 : EQ;5 : NOT;
6 : JMPF(10);7 : LOAD(y);8 : LOAD(z);9 : MULT; 10 : STO(y);
11 : LOAD(z);12 : PUSH(1);13 : SUB; 14 : STO(z); 15 : JMP(—13)

and o € ¥ with o(x) = 2.

0,€,0) > (11,¢e,0[y — 2])
>{1,1,0) >(12,2,0[y — 2])

> (2,e,0ly — 1]) >{13,2: 1,0y — 2]
>(3,2,0y — 1]) > (14,1,0[y — 2])

> {4,2: 1,0y — 1] > (15,¢,0[z — 1,y — 2])
> (5, false, oy — 1]) >{(2,¢,0[x — 1,y — 2])

> (6, true, o[y — 1]) >(3,1,0[z— 1,y — 2])

> {(7,e,0ly— 1]) >{4,1:1,0[z— 1,y — 2]
>{8,1,0[y — 1]) > (5,true, o[z — 1,y — 2])
>(9,1:2,0[y~ 1] > (6, false, o[z — 1,y — 2])
> (10,2, o[y — 1]) > (16, ¢, 0z — 1,y = 2])
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2.9.9 Induction on Finite AM computations

We introduce a new induction principle on finite AM computations as defined in Def. 5.4 (p. 20).
¢ Definition: a finite computation vg,y1, ..., 7% has length k
¢ Induction base: property holds for all computations of length 0
¢ Induction hypothesis: property holds for all computations of length < k

¢ Induction step: property holds for all computations of length k£ + 1

2.9.10 Embedding of Code and Stack

If P+ {pc,e,o)>*{pc, e, o), then
Pl;P;P2 = <|P1| +pceo: 6,0’> >* <|P1| + pc/an : 6,50-,>

for all P, P, € Code and ey € Stk.

Interpretation: both the code and the stack component can be extended without actually changing

the behaviour of the machine.

Proof:
Let P I {pc,e,a) >¥ (pc’, e, 0"y for some k € N, and let Py, P» € Code and e € Stk. By induction on k

we show that
PI;P;P2 [ <|P1| + pc,ep ¢ €,O'> I>k <‘P1’ + pc,760 : €I7O_I>
e k=0: Here pc = pc/, e = ¢’ and o = ¢/, which immediately proves the claim.

o kwo k+1: P {pc,e,a)>F1{pc e, o' implies that there ex. pc” € {0, ...,|P|}, € € Stk and
o” € ¥ such that

P {pc,e,o) > (pc”",e", a"y>* (pc, ¢ o)
Hence,
P, P; P+ <pc + ‘Pﬂ,eo : 6,0‘> > <pC” + ]P1|,eo : 6”,0‘”>

as the instruction at address pc in P is equal to the instruction at address pc + |Py| in Pp; P; P
and €” is fully determined by e and thus independent from eq.

By induction hypothesis, it follows that
Pi; P; Py = (pc” + |Pi|;e0 : €, 0"y >F (pc’ + |Py|,eq : €, 0

which proves the claim.
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2.9.11 Decomposition Lemma for AM programs
Let ¢1,c2 € Cmd and pc € {0, ..., |T [ ]| — 1}. If
Te[er]; Telea] - pe, e, 0) BF (Fe[en]; Telea], ", 0"
then there exists a configuration {pc’,e’, o’y and k1, ko2 € N with k = k1 + ks such that
Teler] F {pc, e, o) M (Ze[ea]], €, 0"
and

Te[erl; Telea] - (|Zeleall, ', ") &2 ([ Telerl; Telea], €, "
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3 Denotional Semantics of WHILE

The primary aspect of a program is its "effect”, i.e. the input/output behaviour. In operational

semantics the semantic functional
O[] :Cmd - (¥ - %)

was defined indirect by referring to the execution relation ("O[c]o := o’ iff {c,0) — ¢”).

Now we abstract from operational details. The Denotional semantics are a direct definition of effects

by induction on the syntactic structure of a program.

3.1 Denotional semantics of arithmetic expression

The (denotional) semantic functional for arithmetic expressions,
A[] : AExp = (X — Z)

is given by:

Alz]o := = Alar + az]o := Afar]lo + AJaz]o
Alz]o := o(z) Wlar — az]o := Afai]o — Afaz]o
Alayr * ag]o := Afar]o - A[az]o
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3.2 Denotional semantics of Boolean expressions

Definition 8.2 ((denotional) semantic functional for Boolean expressions)

The (denotional) semantic functional for Boolean expressions

B[.] : BExp — (X — B)

is given by:
Bt]o =t
true if Afai]o > Afas]o
Bla; = azllo = loa] la2]
false otherwise
true if Bb]o = false
B[—b]o :=

false otherwise

Blar A ag]o :=
false otherwise

false if B[bi]o = B[bz]o = false
Blai v az]o :=
true  otherwise

{true if B[b1]o = B[bz]o = true
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3.3 Denotional semantics of Commands

The goal is to define the semantic function
Cl.]:Cmd - (X - ¥)
which is the same type as the operational function

O[] : Cmd = (¥ — %)

In Fact, both will turn out to be the same, which will result in the equivalence of operational and

denotional semantics.

3.3.1 Auxiliary Functions
The inductive definition of €[.] employs the following auixiliary functions:

o Identity on state (for skip):

dy: X > X:0->0

o (Strict) composition of partial state transformations (for sequential composition):
o:(EoY)x (X))o (X))
where for every f,g:3 —> Y and o0 € X

(go f)(o) == g(f(o))  if f(o) defined

undefined otherwise

o Semantic conditional (for if ):
cond: (X->B)x (-0 x (X)) > (2>
where for every p: ¥ = B, f,g: X > Y and o e X

o) if p(o) = true
cond(p, f,g)(o) = |17 PO =T
g(o) otherwise
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3.3.2 Denotional semantic functional for commands

Definition 8.3 ((denotional) semantic functional for commands)

The (denotional) semantic functional for commands
Cl.]:Cmd — (£ — %)
is given by:
¢[skip] := ids
Cx :=a] := Ao.o|x — Aa]o]
Cer; ea] := €lea] o €fei]

C[if b then ¢; else ¢z end] := cond(B[b], €[c1], €ecz])
C[while b do ¢ end] := fix(®P)

where @ : (¥ —» X) » (¥ > X) : f+— cond(B[b], f o €[], idx)

The A operator in €[z := a] := Ao.o[z — 2A[a]o] denotes functional abstraction:

Clc := a]o = o[z — Afa]c]
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3.4 Fixpoint semantics
3.4.1 Why Fixpoints?

The goal is to preserve the validity of equivalence as in Lemma 4.4 (p. 16):

¢[while b do ¢ end] £ €if b then ¢; while b do ¢ end else skip end]

Using the known parts of Definition 8.3, we obtain:

¢[while b do ¢ end]
& ¢[if b then c;while b do ¢ end else skip end]
LSS cond(B[b], €[c; while b do ¢ end], €[skip])
7= cond(B[b], Clwhile b do ¢ end] o €[c], idy)

Abbreviating f := €[while b do ¢ end] this yields

F< cond(B[B], f o €[], idx)

Hence f must be a solution of this recursive equation. In other words: f must be a fixpoint of the

mapping
P (X-%) > (X—>3X): f cond(B[b], f o €[],idx)

(since (#x) can be stated as f = ®(f))

3.4.2 Well-Definedness of Fixpoint Semantics
The Fixpoint property is not sufficient to obtain a well-defined semantics.
Potential problems:

o Existence: There does not need to exist any fixpoint.
Example: o1 : N->N:n—»n+1

Solution: in our setting, fixpoints always exist

¢ Uniqueness: There might exist several fixpoints.
Example: ¢9 : N — N : n — n? has fixpoints 0,1
Solution: Uniqueness guaranteed by choosing a special fixpoint

Question: Which is the right one?
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3.4.3 Definedness

For the characterisation of the fixpoint fix(®) we will also need the definedness relation C:

Definition L9S13 (Definedness)

Given f,g: ¥ — X, let
!

fEg < foreveryo,0'eX: f(o)=0 = g(o) =0

(g is 7at least as defined” as f)

This is equivalent to requiring
graph(f) < graph(g)
where
graph(h) := {(0,0") | 0 € 8,0’ = h(o) defined} € X x &

for every h: ¥ — X

Example 9.1 (Definedness)

Let x € Var be fixed, and let fy, f1, fo, f3 : X — X be given by

fo(o) := undefined

o if o(x) even
fi(o) :=

undefined otherwise

o if o(x) odd
fa(o) =

undefined otherwise
fa(o) =0

(i.e. fo, f1, f2, f3 are (partial) identities).
This implies

foE L E f3
foE f2E f3
JiE fo
o fi
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3.4.4 Characterisation of fix(®)

Let while b do ¢ end be a while loop (with b € BExp and ¢ € Cmd)
Let ®(f) := cond(B[b], f o €[], ids) be the corresponding semantic function
Let fo: ¥ — X be a fixpoint of @, i.e. D(fy) = fo

Given some initial state og € 3, we will distinguish the following cases:
1. loop while b do ¢ end terminates after n iteration (n € N))
2. body ¢ diverges in the n-th iteration (n > 1) (as it contains a non-terminating while command)
3. loop while b do ¢ end itself diverges

What can be deduced for fy in each of those cases?

Case 1: Termination of Loop

Loop while b do ¢ end terminates after n iteration (n € N))

Formally: there exist o1, ...,0, € ¥ such that

true ifo<i<n
Blb]o; = and
false ifi=n

Clc]o; =0i41 for every 0 <i<n
Now the definition ®(f) := cond(B[b], f o €[¢],idy) implies, for every 0 < i < n:
®(fo)(oi) = (fo o €[c])(4)

= fo(oi+1)
®(fo)(on) = on

Since ®(fy) = fo it follows that

foloi) = fooig1) fO<i<n

on ifi=n
and hence
foloo) = folo1) = ...fo(on) = oy

Thus all fixpoints fy coincide on oy (with result o,)!
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Case 2: Divergence of Body

Body ¢ diverges in the n-th iteration (n > 1) (as it contains a non-terminating while command)
Formally: There exists o1, ...,0,_1 € % such that
Bb]o; = true
e[eo: = Oit1 ifo<i<n—2
undefined ifi=n—1
Just as in the previous case (setting o, := undefined) it follows that

fo(oo) = undefined

Again all fixpoints fy coincide on o( (with undefined result)!

Case 3: Divergence of Loop

Loop while b do ¢ end itself diverges
Formally: There exist 01,09, ... € 3 such that
Bb]o; = true
C[cJo; = oit1 for every i € N
Here only derivable:
®(fo)(0i) = folois1) for every i € N
and thus (as ®(fo) = fo)
foloo) = fo(o;) for every i € N
Thus the value of fy(0p) is not determined!
Summary For ®(fy) = fo and initial state oy € X, the case distinction yields:
1. Loop while b do ¢ end terminates after n iteration (n € N)) = fo(0¢) = on
2. body ¢ diverges in the n-th iteration = fy(og) = undefined
3. loop while b do ¢ end itself diverges = fy(0p) not determined
This is not surprising since, e.g. for the loop while true do skip end, every f : ¥ — X is a fixpoint:
O(f) = cond(Btrue], f o €[skip],ids) = f
On the other hand, out operational understanding requires, for every og € X:

¢[while true do skip end]og = undefined

Conclusion: fix(®) is the least defined fixpoint of ®.
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Corollary L9S15 (Characterisation of fix(®))

fix(®) can be characterised by:
o fix(®) is a fixpoint of ¥, i.e.

D (fix(P)) = fix(P)
o fix(®) is minimal with respect to C, i.e. for every fp: 3 — X such that ®(fy) = fo:

fix(®) E fo

Example 9.2 (Fixpoint)

For while true do skip end we obtain for every f: ¥ — X:
O(f) = cond(B[true], f o €[skip], idy) = cond(true, f o idy,idy) = cond(true, f,ids) = f

This imples fix(®) = f where fg (o) := undefined for every o € ¥ (that is: graph(fy) = &)

Now our goal is to prove the existence of fix(®) for ®(f) = cond(B[b], f o €[c],idx) and to show how

it can be "computed” (more exactly: approximated”).
Sufficient conditions:
¢ on domain ¥ — 3: chain-complete partial order

¢ on function ®: monotonicity and continuity
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3.4.5 Partial orders

Definition 10.1 (Partial order)

A partial order (PO) (D, ) consists of a set D, called domain, and of a relation E€ D x D
such that, for every di,ds,ds € D:

o reflexivity: di E d;

o transitivity: dy E do and ds E d3 = d; E d3

o antisymmetry: dy Ede and doe E dj = dj = do

It is called total if, in addition, always d1 E ds or ds E d;.

Example 10.2 (Partial order)

1. (N, <) is a total partial order
2. (2N, <) is a (non-total) partial order
3.

(N, <) is not a partial order (since not reflexive)

(X — X,C) is a partial order.

Proof of Lemma 10.3:

Using the equivalence f = g <= graph(f) € graph(g) and the partial-order property of <.
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3.4.6 Chains and Least Upper Bounds

Definition 10.4 (Chain, (least) upper bound)

Let (D,E) be a partial order and S € D.

1. S is called a chain in D, if for every s;,s9 € S:
S1 E 89 or s9 E 359

(that is, S is a totally ordered subset of D)
2. An element d € D is called an upper bound of S if s £ d for every s € S (notation: S E d)
3. An upper bound d of S is called least upper bound (LUB) or supremum of S if d = d’
for every upper bound d’ of S (notation: d = | |S)

Example 10.5 (Chains and Least upper bounds)

1. Every subset S € N is a chain in (N, <).
It has a supremum (its greatest element) iff it is finite.
2. {#,{0},{0,1},...} is a chain in (2", ) with supremum N
3. Let x € Var be fixed, and let f; : ¥ — 3 for every 7 € N be given by

f(0) = olr—o(x)+1 ifo(x)<i

undefined otherwise

Then {fo, f1, f2,-..} is a chain in (¥ — X, E), since for every i € N and 0,0’ € X:

) <i,0 =or— o(x) + 1]
)< '

<i+1,0 =colx— o(z) +1]
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3.4.7 Chain Completeness

Definition 10.6 (Chain completeness)

A partial order is called chain complete (CCPO) if each of its chains has a least upper bound.

Example 10.7 (Chain completeness)

. (2N, ©) is a CCPO with || S = Upzeg M for every chain S < 2N

1
2. (N, ) is not chain complete (since e.g. the chain N has no upper bound)

Corollary 10.8

Every CCPO has a least element | | .

Proof of Corollary 10.8:
Let (D,=) be a CCPO.
e By definition, ¢F is a chain in D.
¢ By definition, every d € D is an upper bound of (.

e Thus | | exists and is the least element of D.
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Lemma 10.9

(¥ — X,E) is a CCPO with least element fg where graph(fy) = &.
In particular, for every chain S € ¥ — X, graph(||S) = g graph(f).

Proof of Lemma 10.9

According to Lemma 10.3 (p. 40), (¥ — 0,E) is a partial order.
It therefore suffices to prove that graph(|_|.S) = [Jcq graph(f).

o« We first show that G := | J;cggraph(f) is the graph of a partial function fy : ¥ — .
To this aim, let (0,0”), (0,0") € G.
Hence, there ex. f1, fo € S such that fi(o) = ¢’ and fa(0) = o”.
Since S is a chain, it holds that fi E fo or fo E f1. In both cases o’ = fi1(0) = f2(0) = o”.

e On the other hand, fj is an upper bound of S since, for every f € S, graph(f) € graph(fo).
e It remains to show that fy is minimal. To this aim, let f; be another upper bound of S.
= f E f| for every f€ S

= graph(f) < graph(f1) for every f € S

— graph(fo) = | graph(f) < graph(f1)
fes

= foC f1

= claim

Example 10.10 (Least upper bound)

Let x € Var be fixed, and let f; : ¥ — ¥ for every 7 € N be given by

fo) = ol —» o(x)+1] ifo(z)<i

undefined otherwise
Then S := {fo, f1, f2, ...} is a chain (cp. Example 10.5(3) (p. 41)) with | |S = f where

f:E¥> Y00z o(x)+1]
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3.4.8 Monotonicity

Definition 11.1 (Monotonicity)

Let (D,E) and (D',Z’) be partial orders, and let F : D — D’. F is called monotonic (w.r.t
(D,c) and (D', 2")) if, for every dy,ds € D

diCdy — F(dl) =’ F(dg)

Interpretation: monotonic function ”preserve information”

Example 11.2 (Monotonicity)

1. Let T := {S € N | S finite}. Then

F1:T—>N:S'—>2n

nes

is monotonic w.r.t. (2V,<) and (N, <)

2. The function
Fy: 2N 59N g N\S

is not monotonic w.r.t. (2, <) (since e.g. @ € N but Fa() = N & F»(N) = &)
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Lemma 11.3 (Monotonicity of @)

Let b e BExp, ce Cmd and @ : (X — X) — (¥ — X) with ®(f) := cond(B[b], f o €[], idy).

Then @ is monotonic w.r.t. (¥ — X,E).

Proof of Lemma 11.3

Let f,g: Y — ¥ and 0,0’ € ¥ such that f = g and ®(f)(0) = o’
We have to show that ®(f) E ®(g), i.e. that ®(g)(c) = o’.

To this aim, we distinguish two cases:

o B[b]o = true:

o' = ®(f)(c) (premise)
f(€[c]o) (definition of @)

g(elo) (f = g)

®(g)(o) (definition of ®)

o B[b]o = false:

o' = ®(f)(o) (premise)
= o (definition of @)
= ®(g)(0o) (definition of @)

Lemma 11.4

Let (D,E) and (D’,2’) be CCPOs, F : D — D’ monotonic, and S € D a chain in D.
Then:

1. F(S) :={F(d) | de S} is a chain in D'
2. JF(S) = F(]S)

Proof of Lemma 11.4

1. Given di, d, € F(S), there ex. dy,ds € S such that F(dy) = d}, F(ds) = d and (since S is a chain)
di Edy or d2 E dy.
Since F' is monotonic, this implies F(dy) E F(ds) or F(d2) E F(dy) and thus d} E d5 or dy C df,

which proves the claim.
2. Since S E | | S by definition, monotonicity of F' implies F(S) (*E) F(]9).

As F(S) is a chain (1) and D" a CCPO, | | F(S) exists in D'.
By (%), F(|_|S) is an upper bound of F(S), implying that | | F'(S) £’ F(_|S).
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3.4.9 Continuity

A function F' is continuous if applying F' and taking suprema is commutable:

Definition 11.5 (Continuity)

Let (D,E) and (D',C’) by CCPOs and F : D — D’ monotonic. Then F is called continuous
(w.r.t (D,E) and (D',)) if, for every non-empty chain S € D,

F( |9 =]]Fs)

. J

Remark:

According to Lemma 11.4(1) (p. 45), the monotonicity of F' guarantees the existence of | | F'(S).

Lemma 11.6 (Continuity of ®)

Let b € BExp, ¢ € Cmd and ®(f) : cond(B[b], f o €[], ids).

Then & is continuous w.r.t. (X — X, ).

Proof of Lemma 11.6

Let ¢ # S € ¥ — X be a chain. We have to show that ®(| |.S) = | | ®(S5).

e 7L]®(s) = B(|S):

Follows from Lemmata 11.3 (monotonicity, p. 45) and 11.4(2) ("E”, p. 45).

. "(9) € []D(s)"
By Lemma 10.9 (p. 43), this is equivalent to

graph(®(|_|$)) < ] graph(®(f))

fes

To prove this, let (o,0") € graph(®(|_|9)).
We have to determine f € S such that ®(f)(c) = o’

— If B[b]o = false, then ®(| | S)(c) = 0 = ¢’ and also ®(f)(c) = 0 = o’ for every f € S, which

proves the claim.
— If B[b]o = true, then ®(| | S)(o) = (| |S)(¢") = o’ for " := €[]o.

Since graph(|]S) = (U es graph(f) by Lemma 10.9 (p. 43), ex. f € S such that f(o") = o’
Hence, ®(f)(0) = f(€[c]o) = f(o”) = o', which proves the claim.
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3.4.10 The Fixpoint Theorem

Theorem 12.1 (Fixpoint Theoreme by Kleene)

Let (D,E) be a CCPO and F : D — D continuous. Then

fix(F) := | [{F"( J@) |neN}

is the least fixpoint of F' where F°(d) := d and F"*!(d) := F(F"(d)).

Example 12.2 (Fixpoint Theorem)

o Domain: (2V,€) (CCPO with | |S = [Jyeg N, see Example 10.7 (p. 42))
e Function: F:2Y — 2V : N s N U A for some fixed A € N
— Fis monotonic: M € N = F(M)=MuAc NuA=F(N)
— F is continuous: F([|S) = F(UpyesN) = (UnyesNV) v A = Upnes(N U A) =
Unes F(N) = LIF(S)
» Fixpoint iteration: calculate N,, := F"(| | &) where | | = & (least element)
-N=Ug=0
- Ni=F(No)=guA=A
— No=F(N)=AuA=A=N, foreveryn >1
= fix(F) = A (least N < N such that N u A= N)
o Alternatively: F(N):=Nn A
= fix(F) = & (least N < N such that N n A = N)

Remark: in general, the fixpoint is only reached in the limit (see Example 12.4, p. 49)

TODO: Maybe add proof of fixpoint theorem here

47 / 86



Merlin Denker Semantics and Verification of Software
August 5, 2021 Summary summer semester 2021

3.4.11 Application to fix(®)

Altogether this completes the definition of €[.]. In particular, for the while command:

Corollary 12.3

Let b e BExp, ¢ € Cmd and ®(f) := cond(B[b], f o €[c],idy). Then

graph(fix(®)) = | J graph(9"(fz))

neN

Proof of Corollary 12.3:
Using
e Lemma 10.9 (p. 43)
— (¥ = X,2) CCPO with least element fg
— LUB = union of graphs
e Lemma 11.6 (® continuous, p. 46)

o Theorem 12.1 (Fixpoint theorem, p. 47)

3.4.12 Closedness

Lemma Ex5Task3 (Closedness)

Let (D, E) be a CCPO. A set C' < D is closed iff for each chain G € C,

| |cec

3.4.13 Park’s Lemma

Lemma Ex5Task3.2 (Park’s Lemma)

Let (D,=) be a CCPO and f: D — D a continuous function. Then for every z € D:

f(x) E z implies fix(f) E =
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3.4.14 Example: Denotional semantics of Factorial Program

Example 12.4 (Denotional semantics of Factorial Program)

o Let ce Cmd be given by y := 1;while —=(z = 1) doy:=y*x;2:=x — 1 end
o For every initial state op € ¥, Definition 8.3 (p. 34) yields:

€[c](o0) = fix(®)(o1)
where 01 := op[y — 1] and, for every f: ¥ — ¥ and 0 € X,
8(f)(0) = cond(B[~(z = ], f 0 €y := y # 55 := & — 1], ids)(0)
o ifo(x) =1
f(o') otherwise

with o/ := o[y — o(y) x o(z), 2 — o(z) — 1].

o Approximations of least fixpoint of ® according to Theorem 12.1 (p. 47):
fix(®) = |_|{2"(fg)In € N}

(where graph(fg) = &)
e Performing fixpoint iteration:
folo) := 2°(fz)(0)
= fz(0)

= undefined

fi(0) = 2 (fg)(0)
= ®(fo)(0)
o if o(z) =1
fo(c") otherwise
o if o(z) =1

undefined otherwise

(Example continues on next page)
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Example 12.4 (Denotional semantics of Factorial Program)

¢ Continued fixpoint iteration from previous page:
f2(0) := @*(fg)(0)
= ®(f1)(0)
o if o(z) =1
- fi(c'") otherwise
(o ifo(x) =1
=40 if o(x) #1,0'(z) =1
| undefined if o(x) # 1,0'(x) # 1
(o if o(x) =1
=10 if o(z) =2
(undefined if o(z) # 1,0(z) # 2
(o if o(z) =
=qoly—2=x0(y),z—1] ifo(x)=
 undefined if o(x) #
(Example continues on next page)
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Example 12.4 (Denotional semantics of Factorial Program)

¢ Continued fixpoint iteration from previous page:

f3(0) := 2*(fg)(0)
= ®(f2)(0)
o if o(z) =1

fa(c")  otherwise

-

o if o(x) =1

_ ) o’ if o(z) #1,0'(z) =1
o'ly—2x0'(y),z—1] ifo(z)#1,0'(x) =2
undefined if o(z) #1,0'(z) #1,0'(x) # 2
(U if o(z) =1

_ ) o if o(x) =2
o'ly— 2«0 (y),z—1] ifo(z)=3
\undefined if o(x) ¢ {1,2,3}
(0' if o(z) =1

=<J[yr—>2*a(y),mr—>1] if o(z) =2
oly—3x2x0(y),z—1] ifo(z)=3
\undefined if o(z) ¢ {1,2,3}

(Example continues on next page)
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Example 12.4 (Denotional semantics of Factorial Program)

¢ Continued example from previous page:

e n-th approximation:

fal0) := @"(fz)(0)
oly—o(x)*(o(x) —1)*..x2x0(y),z —> 1] ifl<o(x)<n
undefined if o(x) ¢ {1,...,n}
oly— (c(@)*o(y),z—1] ifl<o(z)<n
undefined if o(z) ¢ {1,...,n}

o Fixpoint:

oly— (c(@)xo(y),x— 1] ifo(z) =1
€l o) = (@) = | T EONr @z 1] o) 2
undefined otherwise
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4 Equivalence of operational and denotional semantics

Theorem 13.1 (Coincidence Theorem)

For every ¢ € Cmd,
Olc] = €[]

ie. {¢,0) — o iff €[c](o) = o', and thus O[.] = €[.].

The proof of Theorem 13.1 employs the following axiliary propositions:

Lemma 13.2

1. For every a € AExp, 0 € ¥ and z € Z:
la,0) = z <= WUa](c) = 2
2. For every b e BExp, 0 € ¥ and t € B:

(byoy >t < B[b](c) =t

Proof of Lemma 13.2
TODO: Both via structural induction on a/b, see exercises
Proof of Theorem 13.1

TODO (see L13 pages 8 and 9)
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5 Axiomatical Semantics of WHILE

5.1 ldea

Example 14.1

e Let c e Cmd be given by
s:=0;n:= 1;while =(n > N) do s:=s+n;s:=n+1 end

e How to show that, after termination of ¢ in state o,

a(N)

o(s)= D k
k=1

e 7"Running” ¢ according to the operational semantics is insufficient: every change of o(N)
requires a new proof
e« Wanted: a more abstract, "symbolic” way of reasoning

Obviously c satisfies the following assertions (after execution of the respective statement):

§:=0;
{s = 0}
n =1
{s=0An=1}

while =(n > N) do s:=s+mn;n:=n+1 end
{SZZk/\n>N}
k=1

where, e.g. ”s = 0” means "o(s) = 0 in the current state o € ¥.”

How to prove the validity of assertions?

o Assertions following assignments are evident (”s = 0”)

e Also, "n > N” follows directly from the loop’s execution condition

o But how to obtain the final value of s7

e Answer: at the loop’s header, the invariant s = 22;11 k is satisfied
— holds initially
— preserved by loop iterations

e Goal: establish such assertions by a proof system

o Employs partial correctness properties of the form {A}c{B} with assertions A, B and ¢ € Cmd
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o Interpretation depends on expected termination behaviour of c:
partial correctness: nothing is said about c if it fails to terminate

total correctness: c terminates on all inputs satisfying {A}
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5.2 The Assertion Language

5.2.1 Syntax of assertions

Assertions = Boolean expressions + quantification over (additional) variables
e to memorise previous values of program variables
¢ to formulate more involved state properties

« usually no occuring in program (use i, k, ...)
Definition 14.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a=z|x|a+a2|a —a2|a*ay € AExp (as before)

A::=t|a1=a2|a1>a2|—|A|A1/\A2|A1VA2|VZ'.AGAssn

Thus: BExp & Assn.
The following (and other) abbreviations will be employed:
Al — A2 = —'Al \2 A2
Ji.A == —(Vi.—A)

ap = az :=a1 > as Vv ay = az
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5.2.2 Semantics of Assertions
o Formalized by a satisfaction relation of the form o = A (where 0 € ¥ and A € Assn)

¢ Non-terminating computations captured by undefined state |

Definition 14.3 (Semantics of assertions)

Let A € Assn and o € X. The relation "o satisfies A” (notation o = A) is inductively defined by:
o [ true

Eai=az if Afar]o = Afaz]o
Ea >ay if Aai]o > Afas]o
E—-A if not o = A
EAAAy ifol A and o = Ay
EAvAy ifoEAlorokE A

o EViA if i — z]| = A for every z € Z
Furthermore, we let [A] := {0 € ¥ | 0 = A} ("semantics of formula A” or ”all models of formula

A”). Ais called valid (= A) if [4] = X.

Q 9 Q 9

Example 14.4 (Semantics of assertions)

The following assertion expresses that, in the current state o € X, o(y) is the greatest divisor of

o(x) (excluding o(x)):

gﬂi.z’>1Az’*x:x2/\\Vj.Vk.(j>1/\j*k::c = k<y)

e Y
y divides z y is maximal

Together with the fact that BExp € Assn, Definition 8.2 (denotional semantics of Boolean expressions,
p. 32) yields:

Corollary 14.5

For every b € BExp and o € X:

oEb < B[bo = true
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5.3 Partial Correctness

5.3.1 Partial Correctness Properties

Definition 15.1 (Partial correctness properties)

Let A, B € Assn and ¢ € Cmd.

e An expression of the form
{A}c{B}

is called a partial correctness property (PCP) with precondition A and postcondi-
tion B.

e Given o € X, we let

o {A}e(B)

if o = A implies that €[c]o = B or €[c]o = L.
o {A}e{B} is called valid (notation: = {A}c{B}) if o = {A}c{B} for every o € X.

Example 15.2 (Partial correctness properties)

o Let x,7 € Var. We have to show:
E{i<zlr:=c+1{i <z}
o According to Definition 15.1 (p. 58), this is equivalent to
cE{i<zlr:=x+1{i <z}
for every o € 3, which is entailed by the following implications:

ok (i <)
= Ai]o < A[z]o (Definition 14.3)
= 0(i) < o(x) (Definition 8.1)
= 0(i) <o(z) +1=(Cfz:=2x+ 1]o)(z)
— (Cfz:=z+1]o) F (i < x)

= claim
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5.4 Hoare Logic

Goal: syntactic derivation of valid partial correctness properties. Here A[x +— a] denotes the syntactic

replacement of every free occurence of x by a in A.

Definition 15.3 (Hoare Logic)

The Hoare rules are given by

{A A b}e1{B} {A A —b}co{B}
{A}if b then c¢; else co end{B}

(SI0) Ay ekin (4] i
(ssgn)

{Alz — a]}z := a{A}
{Ala{C}  {Cler{B}
{A}ci; c2; { B}

F(A—=4) B} EB = B)
{A}e{B}
A partial correctness property is provable (notation: — {A}c{B}) if it is derivable by the Hoare

{A A b}c{A}

hil
(while) {A}while b do c end{A A —b}

(seq)

(cons)

rules. In rule (while), A is called a (loop) invariant.

Example 15.4 (Factorial program in Hoare Logic)

Proof of {A}c{B} where A := (x>0 A x =1), B:= (y =1i!) and ¢ given by:

{x>0nz=1i} =

{Cly —~ 1]}

y:=1

{C}

while =(z = 1) do
{—z=1)AC} =
{Cle »z—-1,y—yxal]}
Y=y ok @
{Clz— 2 - 1]}
ri=x—1
{¢}

end

{(m=(xz=1)AC} =

{y =}
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5.4.1 Discovering invariants

Goal: Prove PCP {A}while b do ¢ end{B} by identifying invariant C:

{C A b}e{C}
{C}while b do c end{C A —b}

(while)

This may require some ingenuity, but there are a few hints on how to do that:

o In general, there are several invariants but most of them are useless (for example, true is always

an invariant)
e A suitable invariant has to be
— weak enough to be implied by the precondition: = (4 = C)
— strong enough to imply the postcondition: = (C A —=b = B)
e In general, looking at the logical structure of the postcondition will help

¢ Often a suitable invariant is found by generalising the postcondition, replacing a constant by

a variable that is changed in the body of the loop

e It can be helpful to ”trace” the loop and inspect the values of the variables at every iteration

Example 15.5 (Invariant)

1. {y=>0Ay=i}z:=1;while =(y =0) doy :=y — 1;2 := 2 * x end{z = z'}
e Invariant: C = (z = 2°7Y)
e Precondition: y Z20Ay=inz=1 = C
e Postcondition: C Ay =0 — z = 2!
22 {z=20Ay>0nx=ilz:=0;whiley<=zdoz:=x—y;z:=2+1end{i = zxy + z}
o Invariant: C' = (i = zxz + )
e Precondition: 2 0Ay>0Arx=itr2=0 = C

e Postcondition: CAy>r — i=z*xy+uw
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5.4.2 Soundness

Soundness: no wrong propositions can be derived, i.e. every (syntactically) provable partial cor-

rectness property is also (semantically) valid.

For the corresponding proof we use:

Lemma 16.1 (Substitution lemma)

For every A € Assn, x € Var, a € AExp and o € X:

oEAlr—a] < o[z Aa]o] EA

Proof by structural induction over A € Assn (omitted)

Theorem 16.2 (Soundness of Hoare Logic)

For every partial correctness property {A}c{B},

= {A}e{B} = = {A}e{B}

Proof of Theorem 16.2:

Let - {A}c{B}. By induction over the structure of the corresponding proof tree we show that, for every
o€ X with o = A, €[c]o = L or €[c]o = B.

« Case (Skip) {A}skip{A} (i.e. ¢ =skip, B = A):
o = A implies €[cflo =0 = A = B.

. Case (asgn) (Blz — a]}z := a{B} (i,e. c=(z:=a), A= B[z — a]):
o = B[z — a] implies €[c]o = o[z — Aa]o] E B (Lemma 16.1).
{A}a{C}  {Cle{B}

{A}er; e2{ B}
The induction hypothesis for {A}c;{C} and {C}ca{B} respectively yields = {A}c1{C} and =

{C}eca{B}, such that €[c;] o | C or €[ci1]o = L.
LA
In the second case, €[c]o = L. Otherwise, €[c]o = €[c2](€]c1]o) = B (or = 1).
——

C

« Case (seq) (i.e. ¢ =c1509):

. Case (i {A A ?}cl{B} {A A —b}ea{B}
{A}if b then ¢; else ¢y end{B}
If B[b]o = true, then o |= A and Corollary 14.5 (p. 57) imply that o = A A b.

By induction hypothesis, €[c]o = €[e¢1]o = B (or = 1).
The case for B[b]o = true is analogous.

{A A blep{A}
{A}while b do ¢p end{A A —b}

(i.e. ¢ =if b then ¢ else ¢y end):

» Case (while) (i.e. ¢ =while bdo ¢y end, B= A A —b):

61 / 86



Merlin Denker Semantics and Verification of Software
August 5, 2021 Summary summer semester 2021

Clegllo  if Bb]o = true
Here Q:[[C]]O’ = flx(@)(g) where q)(f)(O') _ f( [[ 0]] [[ ﬂ t

o otherwise
If €[cJo # L, then there ex. ¢’ € ¥ and n > 1 such that €[cJo = @™ (fz)(o) =0’
By complete induction over n, it follows that ¢’ = A A —b.
E(A = 4)  {4)e{B} E (B = B)

{A}e{B}
Here o = A implies o |= A’, such that the induction hypothesis yields €[cJo = B’ (or = 1). In

the first case, also €[c]o = B.

o Case (cons)
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5.5 Completeness

5.5.1 Incompleteness

Theorem 16.3 (Godel’s Incompleteness Theorem)

The set of all valid assertions
{A € Assn |= A}

is not recursively enumerable, i.e. there exists no proof system for Assn in which all valid assertions

are systematically derivable.

Corollary 16.4

There is no proof system in which all valid partial correctness properties can be enumerated.

Proof of Corollary 16.4:

Given A € Assn, |= A is obviously equivalent to {true}skip{A}. Thus the enumerability of all valid partial

correctness properties would imply the enumerability of all valid assertions.
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5.5.2 Relative Completeness

Theorem 17.1 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e. for every partial correctness property {A}c{B}:

= {A}e{B} = - {A}e{B}

Thus: if we know that a partial correctness property is valid, then we know that there is a corresponding

proof.
Proof of Theorem 17.1:

We have to show that Hoare Logic is relative complete, i.e. that
= {A}ce{B} — + {A}c{B}
Proof:
e Lemma 17.8 (p. 67): + {A., B}c{B}

o Corollary 17.3 (p. 65): = {A}c{B} = (A = A.B)

FA = A.p)  {Acp}e{B} (B = B)
{A}e{B}

* (cons)
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5.6 Weakest liberal precondition

Definition 17.2 (Weakest liberal precondition)

Given c € Cmd and S € ¥, the weakest (liberal) precondition of S with respect to ¢ collects

all states o such that running ¢ in ¢ does not terminate or yields a state in S

wlp[c](S) :={oc e X | C[c]Jo e S u {L}}

Corollary 17.3

For every c € Cmd and A, B € Assn:
L = {4}e{B} < [A] < wip[c]([B])
2. If Ag € Assn such that [Ag] = wip[c]([B]), then

F{A}le{B} = (4 = A)

Remarks:

e Corollary 17.3 justifies the notion of weakest precondition:

it is entailed by every precondition A that makes {A}c{B} valid.

o Here, pre- and postconditions are understood as semantic predicates S, wip[c](S) € 2

("extensional” approach - later: ”intensional” approach by "syntactification”)
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Lemma 17.4 (Weakest liberal precondition transformer)

Weakest liberal preconditions wip[.]() : Cmd — (2* — 2%) can be computed as follows:

wlp[skip] (S
wlp[z := a](S) = {c € £ | o[z — Afa]o] € S}

(5)
(5) =
wip[ei; e2; ](S) = wip[er [ (wip[e2] (5))
(5)
(5)

([[b]] N wip[ei](5)) © ([=0] ~ wip[ea] (5))
IX(¥)

wlip[if b then ¢; else ¢z end](S
wlip[while b do ¢ end](S

where FIX(¥) denotes the greates fixpoint (w.r.t (2*,<)) of

U2 5 9% T o (8] ~ wip[(T) U ([=b] ~ (S))

Remark: FIX(¥) of function ¥ on (2%,Z) can be computed by fixpoint iteration starting from the

greatest element [ | .

Example 17.5

Using Lemma 17.4, we want to determine the weakest liberal precondition for

co
—
{?}whilex #0 Az # 1do x:=2—2 end{r = 1}

C

ie. wip[c](S) for S:=[z =1] ={ce X |o(z) = 1}.

o wip[c](S) = FIX(¥) for ¥(T) = ([z ¢ {0, 1}] nwip[eo}(T)) v ([z € {0;1}]] nS)
—5

o Wip[eo{(T) ={ceX|o[zr— o(x)—2]eT}
 Fixpoint iteration (with initial value [ = X):

(X)) = ([= ¢ {0,1}] nwip[eo](£)) v S = [z # O]
U2(2) = ([ ¢ {0,1}] nwip[co] (Jx £ 0])) U S = [z # 0 Az # 2]
3(8) = ([x ¢ {0,1}] nwip[eo] ([t #0 Az #2])) US=[r#0Az#2Az 4]

— FIX(?) =,y ¥*(2) = {c € 2 | 0(x) € Zo U {1,3,5,..}}
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The following Lemma shows that syntactic weakest preconditions are "provable”:

Lemma 17.8

For every ¢ € Cmd and B € Assn:

H{A.B}c{B}

The proof of Lemma 17.8 is done by structural induction over ¢ (omitted).
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5.7 Expressivity

Definition 17.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if it allows to "syntactify” weakest precondition,

that is, for every ¢ € Cmd and B € Assn, there exists A, p € Assn such that [A. g] = wip[c]([B]).

Theorem 17.7 (Expressivity of Assn)

Assn is expressive.

Proof of Theorem 17.7:

Given c € Cmd and B € Assn, construct A, g € Assn with

ok A.p < C[c]o = B (for every o € ¥). For example:

Askip,B =B
Acyicy,B 1= ACl,ACQ,B

Ay—qB = Blz — a

(for while : ”Godelisation” of sequences of intermediate states)

Lemma 17.9 (Unexpressiveness of BExp)

BExp (i.e. Assn without quantification over variables) is not expressive.

Proof of Lemma 17.9:

Let us assume that BExp is expressive. According to Definition 17.6, for every ¢ € Cmd there exists
b. € BExp such that [b.] = wlp[c]([false]) = wlp[c](Z).

But: for every 0 € X, 0 = b, iff €[c]o = L
o 0 = b, easily checkable (by evaluation B[b.])
o C€[c]Jo = L undecidable (halting problem)

which is clearly a contradiction.
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5.8 Total Correctness

5.8.1 Semantics of total correctness properties

Definition 18.1 (Semantics of total correctness properties)

Let A, B € Assn and ¢ € Cmd.
o {A}c{| B} is called valid in o € ¥ (notation: o = {a}c{] B}) if ¢ E A implies that
¢[c]o E B.
o {A}c{] B} is called valid (notation: = {A}c{] B}) if 0 |= {A}c{] B} for every o € ¥.

Obviously, total implies partial correctness (but not vice versa):

Corollary 18.2

For all A, B € Assn and c € Cmd,

= {Alc{l B} = = {4}¢{B}

5.8.2 Hoare Logic for Total Correctness

Definition 18.3 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by (where i € Var)

(skip) —— e {A}a{l C}  {C}e{l B}
{A}skip{] A} (seq) Aler ol B
(asgn) (if {A A b}er{| B} {A A —b}ea{] B}
&Y Az — a])z = a{| A) {AJif b then ¢ else cs end{| B}
(while) EEZ0RAG+D) = b) {207 AG+ D}l 4D} F (A0) = D)

{3i.i = 0 A A(7)}while b do c end{| A(0)}
FA = 4) {A}{IB} (B = B)

{A}e{l B}
A total correctness property is provable (notation: — {A}c{] B}) if it is derivable by the Hoare

(cons)

rules. In case of (while), A(i) is called a (loop) invariant.
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5.8.3 Proving Total Correctness

e In rule

FE({@=0AA(i+1) = b) {i=0AAG+D}c{l A1)} E (A(0) = —b)
{3i.i = 0 A A(i)}while b do ¢ end{] A(0)}

(while)

the notation A(i) indicates that assertion A parametrically depends on the value of variable

1 € Var.
o Idea: ¢ represents the remaining number of loop iterations

e Loop to be traversed i + 1 times (i > 0)
— A(i+ 1) holds
= execution condition b satisfied

Thus: = (i >0A A(i +1) = b), and i + 1 decreased to i by execution of ¢

o Execution terminated
= A(0) holds
= execution condition b violated

Thus: = (A(0) = —b)
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5.8.4 Example: Total Correctness of Factorial Program

Example 18.4 (Total Correctness of factorial program)

Proof of {A}c{] B} where A := (z > 0 Az = i), B := (y = i!) and ¢ given below (with loop
invariant C(j) := (z > 0 Ay = a! =il A j = x — 1); all correctness properties total):
{fx>0nz=1i} =
{355 20ACUH)ly — 1]}
Y=
{375 =20AC()}

{iz0AC0H)[x—z-1]}

rz:=x—1
{iz0AC0H)} = {CU)}
end

{C00)} = {y=i}

5.8.5 Soundness of Hoare Logic for TCP

Theorem 18.5 (Soundness of Hoare Logic for TCP)

For every total correctness property {A}c{| B},

= {4}e{l B} = = {A}c{l B}

Proof by structural induction over the derivation - {A}c{] B} (only (while) case): TODO add the proof
(L18 P11)
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5.8.6 Relative Completeness of Hoare Logic for TCP

Theorem 18.5 (Relative Completeness of Hoare Logic for TCP)

The Hoare Logic for total correctness properties is relatively complete, i.e. for every {A}c{| B}:

= {Alc{l B} = - {4}c{l B}
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5.9 Weakest total precondition

Definition 18.6 (Weakest (total) precondition)

Given c € Cmd and S € ¥, the weakest (total) precondition of S with respect to ¢ collects all

states o such that executing c in ¢ terminates and yields a state in S:

wp[c](S) := {o € ¥ | €[c]o € S}

| \.

Lemma 18.7

For every c € Cmd and A, B € Assn:
L. ={A}c{] B} < [A] = wp[c]([B])
2. If Ag € Assn such that [Ag] = wp[c]([B]), then = {A}c{] B} <= = (A = Ay).
3. Assn is expressive also w.r.t. weakest total preconditions, that is, there exists A, p € Assn
such that [A. g] = wp[c]([B]).
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Lemma 18.8 (Weakest precondition transformer)

Weakest preconditions wp[.](.) : Cmd — (2% — 2%) can be computed as follows:

wp[skip](S) = S

wp[z := a](S) = {o € X | o[z — Ua]o] € X}

wpler; 2] (S) = wp[er](wp[e2] (5))
(5) = ([6] ~ wp[[e1](S)) v ([—0] ~ wple2](5))
() = fix

(V)

wpl[[if b then ¢; else ¢ end](S

wp[while b do ¢ end](S

where fix(¥) denotes the least fixpoint (w.r.t. (2*,<)) of

V2% 5 9% T s ([B] n wp[e)(T)) u ([=b] A S)

Example 18.9

Using Lemma 18.8, we want to determine the weakest precondition for
co
——
{?}whilex #0 Az # 1 do x:=2—2 end{z = 1}
C
ie. wp[c](S) for S:=[z=1]={oce X |o(zx) =1}.

o wp[c](S) = fix(¥) for ¥(T) = ([z ¢ {0,1}] nwp[co](T)) L S[[x € {Oirl}]] N SZ
_s

o wp[eo(T) ={oeX|o[x— o(x)—2] €T}
 Fixpoint iteration (with initial value | | = &F):

V() = ([= ¢ {0,1}] n wp[eo] () v [[90 = 0]
V() = ([z ¢ {0,1}] nwp[eo]([z = 1])) u S = [[37 e {1,3}]
V() = ([z ¢ {0,1}] nwp[eo] [z € {1,3}])) v S = [z € {1,3,5}]

— fix(¥) = |, oy V(D) = {0 €2 | o(z) € {1,3,5,..}}
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5.10 Axiomatic Equivalence

In the axiomatic semantics, two statements have to be considered equivalent if they are inditinguishable

w.r.t. (partial correctness properties:

Definition 19.1 (Axiomatic equivalence)

Two statements c1,co € Cmd are called axiomatically equivalent (notation: ¢; & ¢p) if, for all

assertions A, B € Assn,

= {Ala{B} <= F {A}e{B}

Total correctness yields same notion of equivalence (see Theorem 19.8, p. 79).

Example 19.2 (Axiomatic equivalence)

We show that while b do ¢ end = if b then ¢; while b do ¢ end else skip end.
Let A, B € Assn:

= {A}while b do ¢ end{B}

(Theorem 16.2, 17.1
—

“{ A}while b do c end{B}

(rule (while))
—

ex. C € Assn such that = (A = C),=(C A —=b = B),
H{C A b}c{C}

(rule (seq),(skip))
<

ex. C € Assn such that (A = C),=(C A —=b = B),
 {C A b}e;while b do ¢ end{C A —b}
 {C A —b}skip{C A —b}

(rule (if)
—

'ex. C € Assn such that E(A = O),E(CA—-b = B),
F {C}if b then c¢; while b do ¢ end else skip end{C A —b}

(rule (cons

P { A}if b then c¢; while b do ¢ end else skip end{B}

(T2 B2 D1 AYif b then ¢; while b do ¢ end else skip end{B}
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5.11 Characteristic Assertions

To relate axiomatic and operational/denotional equivalence, we have to encode states by assertions:

Definition 19.2 (Characteristic assertion)

Given a state ¢ € X and a finite subset of program variables X < Var, the characteristic

assertion of o w.r.t. X is given by

state(o, X) := /\(m = o(x) ) € Assn

reX o7

(where state(o, &) := true). Moreover, we let state(L, X) := false.

Corollary 19.4

For all finite X < Var and o € X,

o |= state(o, X)

Programs and characteristic state assertions are obviously related as follows:

Corollary 19.5

Let ¢ € Cmd, and let FV(c) € Var denote the set of all variables occuring in c.
Then, for every finite X 2 FV(c) and 0 € X,

= {state(o, X)}c{state(€[c]o, X)}

If moreover €[c]o # L, then |= {state(c, X)}c{| state(€[c]o, X)}.
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Example 19.6 (Characteristic Assertions of factorial program)

e For ¢:= (y:= 1;while =(x = 1) do y := y * ;2 := = — 1 end),
X ={z,y,z} 2 FV(c) = {z,y}, o(x) =3,0(y) =0, and o(z) = 1, we obtain

state(o, X) =(x=3Ary=0A2z=1)
state(€fc]o, X) =(x =1Ay=6Ar2z=1)

and thus = {state(o, X)}c{| state(€[c]o, X)}.

o If X P FV(c), then the claim generally does not hold: e.g. f= {y = 0}c{y = 6}!
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5.12 Axiomatic vs. Operational/Denotional Equivalence

Theorem 19.7

Axiomatic and operational /denotional equivalence coincide, i.e. for all ¢, c2 € Cmd,

Cl R C) < C1 ~ C

Proof of Theorem 19.7

‘We have to show:
VA, B € Assn := {A}c1{B} — E {A}c2{B}
iff Vo € ¥ : €[e1]o = Cego

”

. —
Let ¢; ~ ¢ and X := FV(c1) u FV(c2).
Assume ex. o € ¥ such that €[c1]o # C[ez]o.

.,

Two cases are possible:

— Clei]o = L # €[ez]lo (or vice versa): Here
= {state(o, X)}ci{false} but K= {state(o, X)}co{false}

which contradicts ¢1 & ¢o.

— o1 :=Cc1]o # L # Cep]lo =: o9
Here ex. x € X with o1(x) # o2(x), such that (using Corollary 19.5, p. 76)

= {state(o, X)}ci{state(o1, X)} but H= {state(o, X)}co{state(oy, X)}

which again contradicts ¢; =~ co.

« V="
Let ¢1 ~ co.
Assume ex. A, B € Assn with |= {A}ci1{B} but = {A}ca{B} (or vice versa).
Thus ex. o € [A] with L # €[cz]o f= B. Again two cases are possible:

— Cer]o = L # €[eg]o:
This contradicts ¢; ~ cs.
— 1L # 01 :=C[ci]o = B (and o9 := €[ezx]o K= B):

Here ex. x € FV(B) with o1(x) # o2(x), which contradicts ¢; ~ co.
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5.12.1 Partial vs. Total Equivalence

Using characteristic state assertions, we can show that considering total rather than partial correctness

properties yields the same notion of equivalence:

Theorem 19.8

Let ¢1,c2 € Cmd. The following propositions are equivalent:
o Forall A, B € Assn :={A}c1{B} — = {A}c2{B}
o Forall A, B e Assn:={A}ci{|l B} < E {A}c2{| B}

TODO: proof of Theorem 19.8 (L19 Page 14)
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6 Extension by Blocks and Procedures

o Extension of WHILE by nested blocks with local variables and recursive procedures

o Simple memory model (X := {0 | o : VartoZ}) not sufficient any more as variables can occur in

several instances
¢ Involves new semantic concepts:
— variable and procedure environments
— locations (memory addresses) and stores (memory states)
e Important: scope of variable and procedure identifiers

— static scoping: scope of identifier = declaration environment

(also: ”lexical” scoping; used here)

— dynamic scoping: scope of identifier = calling environment

(old Algo/Lisp dialects)

6.1 Extending the syntax

6.1.1 Syntactic categories

Category Domain Meta variable
Procedure identifiers Pid={P,Q,..} P
Procedure declarations PDec p
Variable declarations VDec v
Commands (statements) Cmd c

6.1.2 Syntax of extended WHILE

Definition L20P6 (Syntax of extended WHILE)

The syntax of extended WHILE Programs is defined by the following context-free grammar:
pu= proc Piscend;p]|e € PDec
vi= varzuv e € BExp
cu= skip|z:=a|ci;co|if bthen ¢; else ¢z end | while b do ¢ end |
call P | begin v p c end € Cmd

o All used variable/procedure identifiers have to be declared

e Identifiers declared within a block must be distinct
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6.2 Locations and Stores
o So far: states ¥ = {0 | 0 : Var - Z}

o Now: explicit control over all (nested) instances of a variable:

Definition L20P8 (Variable Environments, Locations and Stores)

« variable environments:
VEnv :={p | p : Var — Loc}

(Partial function to maintain declaredness information)

¢ locations:
Loc:=N
e stores:
Sto := {0 | 0 : Loc — Z}

(partial function to maintain allocation information)

= Two-level access to a variable z € Var:

1. determine current memory location of x:
L= p(z)

2. reading/writing access to o at location !

Thus: previous state information represented as o o p : Var — Z

Definition L20P9.2.1 (Update Relation of Variable Declaration)

Effects of declaration: update of variable environment and store

upd,[.] : VDec x VEnv x Sto — VEnv x Sto

upd, [v](p[z = L], o[lz = 0])
upd, [e](p, o) := (p, 0)

upd, [var z;v](p, o) :

where I, := min{l € Loc | () = 1}
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6.3 Procedure Environments and Declarations

Definition Procedure Environment (L20P9.1)

The Effect of a procedure call is determined by its body and variable and procedure environ-

ment of its declaration:
PEnv := {7 | 7 : Pid - Cmd x VEnv x PEnv}

denotes the set of procedure environments.

Definition L20P9.2.2 (Update Relation of Procedure Declaration)

Effects of procedure declaration: update of procedure environment

upd,[.] : PDec x VEnv x PEnv — PEnv

upd, [proc P is ¢ end; pl(p, 7) = upd, [p(p, 7[P > (¢, p, 7))
upd,[e](p,7) := 7
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6.4 Execution Relation

Definition 20.2 (Execution relation of extended WHILE)

For ¢ € Cmd, 0,0’ € Sto, p € VEnv, and 7 € PEnv, the execution relation (p,7) + {(¢,0) — ¢’

(”in environment (p, ), statement ¢ transforms store o into ¢’”) is defined by the following rules:

(sldp) (p,m) b (skip,o) —> o

(a,00p) >
p.m) F (@ i= 4,0) = olp(@) > 2]

(asgn) (

(p,m) ={er,0) >0’ (pm) ={e2,0) > 0"
(p, ) 1= {er;e2,0) = 0"

(seq)

byoop)>true  (p,7) =<e1,0) = o'

if-t
(if-t) (p,7) = (if b then ¢; else ¢y end, o) — o’

(b,0 0 py — false (p,7) {ea,0) = o

if-f
(if-) (p, ) b (if b then ¢; else ¢y end, o) — o’
(b,0 o py — false
h-f
(wh-£) (p,7) - {while b do c end,0) > o
(wht) (b,0 0 py — true (p, ) - {e,o) — o (p, ) = {while b do ¢ end, o’y — o’
(p, ) I {while b do ¢ end, o) — o”
(call) m(P) = (e, p\ ) (7P (c,p,7)]) F{e,0) o o
(p,7) —{call P,o) —> o'
_ / !/ / — !/ / / !/ "
(blOCk) UpdvII’U]](p,O') - (,0,0') updp[[p]](pﬂr) ™ (paﬂ—) |—<C,O'>—>O'

(p, ) - (begin v p c end,0) — o”

The initial environment (pg, 7) is given by pg(x) = 75 (P) = L (x € Var, P € Pid).

Remarks:
o Evaluation of (arithmetic and Boolean) expressions can now fail due to undeclared variables.

e In rules for composite statements, the exceution of sub-statements can have an effect on the
environments (due to nested blocks), but this effect is transient.
m(P) = (c,p\7) (7 [P (c,p 7)) Fle,o) > 0"

o Rule 1
(cal) (p,7) +{call P,o) —> o'

— Static scoping is modelled by using the environments p’ and 7’ (as determined in (block))

from the declaration site of procedure P (and not p and 7 from the calling site).

— For executing the procedure call, the procedure environment associated with P (7') is extended

by a P-entry to handle recursive calls of P:

'[P = (c,p,7)]
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6.5 Command Semantics using Variable Environments

o First step: reformulation of Definition 8.3 (p. 34) using variable environments and locations

(initially disregarding procedures)

e So far: €[.]: Cmd — (¥ — X))

Definition 21.1 (Denotional semantics using locations)

The (denotational) semantic functional dor commands,
@'[.] : Cmd — VEnv — (Sto — Sto)
is given by:
&'[skip]p := idsto

[z := a]p := No.o|p(x) — A[a](lookup p )]

C'er; ealp = (C'e2]p) o (Eeallp)
¢'[if b then c; else ¢y end]p := cond(B[b] o (lookup p), € [c1]p)
¢'[while b do ¢ end]p := fix(®)

where lookup : VEnv — Sto — (Var — Z) with lookup p o := 0 0 p and

® : (Sto — Sto) — (Sto — Sto) : f — cond(B[b] o (lookup p), f o €'[c]p, idsto)
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